28,632 research outputs found

    Submillimeter polarization and variability of quasar PKS 1830-211

    Full text link
    Polarization from active galactic nuclei is interpreted as a signpost of the role of magnetic fields in the launch and collimation of their relativistic radio jets. Here, we report the detection of a clear polarization signal from ALMA observations of the gravitationally lensed quasar PKS 1830-211 at submillimeter wavelengths (Band 9, 650 GHz). Applying a differential-polarimetry technique to the two compact lensed images of the quasar, we estimate a fractional polarization of ~5% for one lensed image, while the other appears nearly unpolarized, which implies that the polarization activity varies on a timescale of a few weeks. With additional ALMA Band 7 and 8 (between 300-500 GHz) concomitant data, we constrain a Faraday rotation of a few 10510^5 rad m−2^{-2}. We also observe flux-density variability of ~10% within one hour in Band 9. This work illustrates that a differential analysis can extract high-accuracy information (flux-density ratio and polarimetry) free of calibration issues from resolved sources in the submillimeter domain.Comment: 7 pages, 6 figures, accepted for publications in A&

    Using gravitational lensed images to investigate the intrinsic AGN variability

    Get PDF
    We discuss about how the relative flux densities among the images of gravitationally-lensed active galactic nuclei, AGN, can be used to study the intrinsic AGN variability with high accuracy. Multi-frequency monitoring observations of resolved gravitational lenses can allow us to detect signals of very weak variability and also provide information about the jet opacity and structure. As an example, we investigate the variability of the flux-density ratio between the two lensed images of the blazar B0218+357, using dual-frequency cm-wave observations. Similar to our previously reported submm-wave observations of the lensed blazar PKS1830-211, we observe a clear chromatic variability, starting short before an increase in the flux-density of the blazar. The evolution of the flux-density ratios between the blazar images shows a more clear and rich structure than that of the mere lightcurves of each individual image. The accuracy in the ratio measurements is allowing us to see variability episodes in the blazar that are weaker than the natural scatter in the absolute flux-density measurements. A simple opacity model in the jet is used to consistently explain the difference between the flux-density-ratio evolution at the two frequencies.Comment: 5 pages, 2 figures. Accepted for publication in A&A. Final versio

    Quantum phase transitions in fully connected spin models: an entanglement perspective

    Full text link
    We consider a set of fully connected spins models that display first- or second-order transitions and for which we compute the ground-state entanglement in the thermodynamical limit. We analyze several entanglement measures (concurrence, R\'enyi entropy, and negativity), and show that, in general, discontinuous transitions lead to a jump of these quantities at the transition point. Interestingly, we also find examples where this is not the case.Comment: 9 pages, 7 figures, published versio

    Strong monotonicity in mixed-state entanglement manipulation

    Full text link
    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose new strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and 1-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement.Comment: 6 pages and 1 figure. A brief discussion about the connection to asymptotic distillability was adde

    The joys of permutation symmetry: direct measurements of entanglement

    Get PDF
    So-called direct measurements of entanglement are collective measurements on multiple copies of a (bipartite or multipartite) quantum system that directly provide one a value for some entanglement measure, such as the concurrence for bipartite states. Multiple copies are needed since the entanglement of a mixed state is not a linear function of the density matrix. Unfortunately, so far all experimental implementations of direct measurements made unverified assumptions about the form of the states, and, therefore, do not qualify as entanglement verification tests. I discuss how a direct measurement can be turned into a quantitative entanglement verification test by exploiting a recent theorem by Renner (R. Renner, Nature Physics 3, 645 (2007)).Comment: 4 pages, 3 figure

    Creation and Manipulation of Anyons in the Kitaev Model

    Full text link
    We analyze the effect of local spin operators in the Kitaev model on the honeycomb lattice. We show, in perturbation around the isolated-dimer limit, that they create Abelian anyons together with fermionic excitations which are likely to play a role in experiments. We derive the explicit form of the operators creating and moving Abelian anyons without creating fermions and show that it involves multi-spin operations. Finally, the important experimental constraints stemming from our results are discussed.Comment: 4 pages, 3 figures, published versio
    • …
    corecore